Two transcription factors, Pou4f2 and Isl1, are sufficient to specify the retinal ganglion cell fate.

نویسندگان

  • Fuguo Wu
  • Tadeusz J Kaczynski
  • Santhosh Sethuramanujam
  • Renzhong Li
  • Varsha Jain
  • Malcolm Slaughter
  • Xiuqian Mu
چکیده

As with other retinal cell types, retinal ganglion cells (RGCs) arise from multipotent retinal progenitor cells (RPCs), and their formation is regulated by a hierarchical gene-regulatory network (GRN). Within this GRN, three transcription factors--atonal homolog 7 (Atoh7), POU domain, class 4, transcription factor 2 (Pou4f2), and insulin gene enhancer protein 1 (Isl1)--occupy key node positions at two different stages of RGC development. Atoh7 is upstream and is required for RPCs to gain competence for an RGC fate, whereas Pou4f2 and Isl1 are downstream and regulate RGC differentiation. However, the genetic and molecular basis for the specification of the RGC fate, a key step in RGC development, remains unclear. Here we report that ectopic expression of Pou4f2 and Isl1 in the Atoh7-null retina using a binary knockin-transgenic system is sufficient for the specification of the RGC fate. The RGCs thus formed are largely normal in gene expression, survive to postnatal stages, and are physiologically functional. Our results indicate that Pou4f2 and Isl1 compose a minimally sufficient regulatory core for the RGC fate. We further conclude that during development a core group of limited transcription factors, including Pou4f2 and Isl1, function downstream of Atoh7 to determine the RGC fate and initiate RGC differentiation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isl1 and Pou4f2 Form a Complex to Regulate Target Genes in Developing Retinal Ganglion Cells

Precise regulation of gene expression during biological processes, including development, is often achieved by combinatorial action of multiple transcription factors. The mechanisms by which these factors collaborate are largely not known. We have shown previously that Isl1, a Lim-Homeodomain transcription factor, and Pou4f2, a class IV POU domain transcription factor, co-regulate a set of gene...

متن کامل

Gene regulation logic in retinal ganglion cell development: Isl1 defines a critical branch distinct from but overlapping with Pou4f2.

Understanding gene regulatory networks (GRNs) that control neuronal differentiation will provide systems-level perspectives on neurogenesis. We have previously constructed a model for a GRN in retinal ganglion cell (RGC) differentiation in which four hierarchical tiers of transcription factors ultimately control the expression of downstream terminal genes. Math5 occupies a central node in the h...

متن کامل

ISL1 and BRN3B co-regulate the differentiation of murine retinal ganglion cells.

LIM-homeodomain (HD) and POU-HD transcription factors play crucial roles in neurogenesis. However, it remains largely unknown how they cooperate in this process and what downstream target genes they regulate. Here, we show that ISL1, a LIM-HD protein, is co-expressed with BRN3B, a POU-HD factor, in nascent post-mitotic retinal ganglion cells (RGCs). Similar to the Brn3b-null retinas, retina-spe...

متن کامل

Overlapping spatiotemporal patterns of regulatory gene expression are required for neuronal progenitors to specify retinal ganglion cell fate

Retinal progenitor cells (RPCs) are programmed early in development to acquire the competence for specifying the seven retinal cell types. Acquiring competence is a complex spatiotemporal process that is still only vaguely understood. Here, our objective was to more fully understand the mechanisms by which RPCs become competent for specifying a retinal ganglion cell (RGC) fate. RGCs are the fir...

متن کامل

Genetic Interactions between Brn3 Transcription Factors in Retinal Ganglion Cell Type Specification

BACKGROUND Visual information is conveyed from the retina to the brain via 15-20 Retinal Ganglion Cell (RGC) types. The developmental mechanisms by which RGC types acquire their distinct molecular, morphological, physiological and circuit properties are essentially unknown, but may involve combinatorial transcriptional regulation. Brn3 transcription factors are expressed in RGCs from early deve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 13  شماره 

صفحات  -

تاریخ انتشار 2015